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Abstract
In this paper we present a comparative analysis of the isostructural compounds MFe4Al8, with
M = Y and U. These compounds have different magnetic ground state structures: a cycloid spin
spiral in the case of YFe4Al8 and a canted structure in the case of the actinide compound.
Model calculations show that it is the presence of a strong spin–orbit coupling in the actinide
compound that leads to a magnetic configuration with symmetry properties that differ from the
YFe4Al8 cycloid structure. Furthermore we show that in the absence of spin–orbit coupling, the
U compound would have the same spin spiral as the Y compound. A further analysis for two
actinide compounds, UFe4Al8 and NpFe4Al8, point to similar magnetic ground state structures;
however the actinides play different roles in the magnetisms of the two compounds. Despite
their differences, all three magnetic structures can be seen as deviations from the type G
antiferromagnetic structure.

New calculations for UFe4Al8 permit a clarification of previous computational studies, and
we present, within a simplified model, an analysis of the Fe–Fe exchange interactions for
YFe4Al8 and UFe4Al8, calculated within the frozen magnon approximation.

1. Introduction

The compounds MFe4Al8, where M is a rare earth or an
actinide, and the semi-ordered alloys MFex Al12−x which form
in a large range of compositions, have large magnetic moments
and anisotropic magnetic properties. The combination of a
large range of compounds with unusual magnetic properties
and the possibility of technological applications has focused
the interest of a large number of researchers in this area.
A previous theoretical study of the UFex Al12−x [1, 2] has
analysed the role of the variation of the Fe content within
the U compound, in this paper we present a comparative
study of the role of the M element for the actinide U and
the rare earth Y. Further comparisons between the U and the
Np isostructural compounds show the similarities between the
actinide compounds and reforce the common points, and the
differences, between the actinide and rare earth compounds of
this series.

In the majority of these compounds both the M and the
Fe sublattices are magnetic and both the actinide and rare
earth compounds of the MFe4Al8 series show complex ground
state magnetic configurations. The large variety of magnetic
configurations ranges from spin spirals [3–5], to noncollinear
antiferromagnetic and ferromagnetic structures [6, 7], or
even spin modulated configurations [8]. The magnetic
structures, partially determined by the level of localization and
hybridization of the wave functions, are also constrained by
symmetry, in this case imposed by the crystal structure and the
presence of spin–orbit coupling, with different effects for the
actinides and the rare earths compounds.

UFe4Al8 is a good example of this complexity and
its unusual physical properties have been the focus of
attention for the last two decades [6, 9–17]. Unlike the
RFe4Al8 (R = magnetic rare earth) compounds, where the
ordering of the rare earth and iron magnetic moments
develop at different temperatures [4], in UFe4Al8 only one
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transition temperature, involving the two magnetic sublattices,
is observed [6]. Neutron diffraction experiments on a
stoichiometric single crystal report Fe moments aligned along
the a (or the equivalent b) axis of the tetragonal structure with a
slightly canted antiferromagnetically structure and the uranium
moments ferromagnetically aligned in the (a, b) plane and
almost perpendicular to the iron moments [6]. Therefore, this
structure has a ferromagnetic contribution from the uranium
atoms (0.47 μB/U), and a weak ferromagnetic contribution
from the iron sublattice (0.3 μB/Fe). Magnetization
measurements on single crystal samples have confirmed
the a and b as the easy magnetization axes [16]. A
relativistic band structure calculation of UFe4Al8 shows that
the magnetism at the uranium atoms is induced by the of
the iron sublattice [11] and is a result of the hybridization
between the itinerant Fe 3d and U 5f electrons. NpFe4Al8 has
been less studied than its isostructural U compound [18–22].
Early studies report that Np and Fe moments order
along the c axis at close temperatures, 115(10) K and
130(10) K, with, respectively, ferro and antiferromagnetic
configurations [18, 19]. Subsequent studies led to the
proposal of a spin-glass state at low temperatures [20]. Later
experimental studies show that NpFe4Al8 has a magnetic
behaviour that is similar to that of UFe4Al8 and a parallel
theoretical study showed that the two magnetic sublattices,
although coupled by hybridization, can order independently in
this compound [22].

Studies of the RFe4Al8 series in the late 1970s determined
antiferromagnetic interactions for the Fe sublattice with
ordering temperatures between 90 and 200 K [23–25].
The reported ordering temperatures of the magnetic rare
earth atoms are lower than 50 K, which is explained by
antiferromagnetic structure of the Fe sublattice and the high
symmetry of the 2a sites, occupied by the rare earths. Later,
polycrystalline samples of MFe4Al8, M = La, Ce, Lu, Y [3]
and Tb [26], were reported to order between 130 and 200 K
with distinct types of spiral structures requiring two sets of
wavevectors for their description with Fe moments close to
2 μB per atom. YFe4Al8 was found to order at around
185 K with the Fe moments forming two cycloids in the a–b
plane with propagation vector q = 2π

a (0.135, 0.135, 0) [3]
and a phase difference of ±140◦. In the case of YFe4Al8,
Y is non-magnetic and therefore the Fe moments form the
only magnetic lattice. The Fe moments order in a spin
spiral with propagation vector along [110] [3, 8]. Mössbauer
studies on YFe4Al8 show a gradual ordering of the Fe lattice
and suggest a negligible effect of the rare earth on the Fe
sublattice [27, 28]. The reported experimental values for
the Fe magnetic moment in YFe4Al8 vary from 0.7 μB/Fe,
determined by Mössbauer spectroscopy [27], to 2.1 μB/Fe,
measured by neutron diffraction [3]. Both values are far from
the values determined for similar compounds: 1.3 μB for
LuFe4Al8 [8], for example.

Deviations in the samples’ stoichiometry and the drastic
differences in the magnetic properties of compounds with
similar compositions, along with the complex magnetic
structures, explain the large range of experimental results.
Previous theoretical studies have contributed to a fuller

Figure 1. ThMn12 crystal structure.

understanding of the experimental data [11, 22, 29], in the
present work the theoretical study will be expanded to allow
a direct comparison of the compounds in question.

1.1. Symmetry properties

These compounds crystallize in a body centred tetragonal
ThMn12 type structure, shown in figure 1 [30]. The actinide or
rare earth atoms occupy the 2a sites while Fe occupies the 8 f
sublattice and the 8 j and 8i sites are occupied by Al [31].

The symmetry of UFe4Al8 and NpFe4Al8 was described
in [11, 22] and that of rare earth compounds, for example
YFe4Al8 with ThMn12 type structures was studied in [32]. The
differences between the actinide compounds and YFe4Al8 is
related to the spin–orbit coupling. In the actinide compounds,
the spin–orbit coupling of the itinerant 5f electrons plays an
important role coupling the space and spin coordinates and
decreases the symmetry of the system. In the case of the rare
earth compounds, there are no itinerant f functions, and this
symmetry reduction does not occur.

As discussed by Sandratskii [33], the absence of a
strong spin–orbit coupling in the itinerant electrons permits
the development of a spin spiral. However for the actinide
compounds the spin–orbit coupling of the itinerant 5f electrons
does not permit the formation of a spin spiral: the crystal
symmetry determines a magnetic structure where the Fe
moments deviate from a collinear type G antiferromagnet,
developing a component parallel to the actinide moment [11].

In YFe4Al8 the fact that the spin and space coordinates are
decoupled permits the existence of a spin spiral. The spin spiral
structures are generated by a symmetry operation consisting of
a spatial translation and a spin rotation. The magnetic structure
determined by neutron diffraction is described as a cycloid
structure with a propagation vector q = 2π

a (τ, τ, 0) and the
Fe moments on the a–b plane [3]. The compounds with a
wavevector of this type, belonging to Imm2 the space group,
have point group components: Cxy

2 ν = {1, 2xy,m−xy,mz}.
Since the propagation vector is not invariant under a four fold
rotation, the Fe atoms, within equivalent crystal sites, are split
into two magnetic sublattices. For each site the magnetic
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moment may be described through vectors given by:

m(r) = M(e1 cos(q · r + θi)+ e2 sin(q · r + θi)). (1)

This model corresponds to a cycloid structure for the two
Fe lattices with the same chirality and the magnetic moments
on the (001) plane. However there can be a nonzero phase,
represented by θi , with i = 1, 2, with a value not determined
by symmetry. Additional physical constraints are required to
determine the phase value.

1.2. Previous results

Previous theoretical studies of YFe4Al8 [29] consist of self-
consistent calculations of the density of states and magnetic
moments and the comparison of the total energy of different
magnetic configurations, calculated with the use of the force
theorem. The magnetic moment is similar for all the
studied magnetic configurations: as expected Y has negligible
magnetic moment and the Fe moment is 1.3 μB per atom.
The calculated Fe moment is close to the experimental values
for similar compounds, and is within the range of the large
variety of values reported for YFe4Al8, ranging from 0.7 to
2.1 μB/Fe. Comparison of several cycloid structures with
different wavevectors along the [110] direction, permitted the
determination of the lowest energy magnetic configuration,
a cycloid with a propagation vector q = 2π

a (0.85, 0.85, 0).
The value τ = 0.85 is very different from the neutron
diffraction value, τ = 0.135 [3], however the reinterpretation
of the magnetic structure by considering only one Fe sublattice
(which means that the angle between the two iron sublattices is
given by β = q · (r3 − r1)), with q = 2π

a (0.85, 0.85, 0) leads
to an angular relation between the Fe moments similar to that
proposed to fit neutron diffraction. In this way there is no need
for a second Fe sublattice to describe the magnetic structure.

The magnetic structure of UFe4Al8 was determined by
neutron diffraction [6]. It consists of a ferromagnetic U lattice
and a noncollinear antiferromagnetic Fe lattice. The two
lattices are both in the a–b plane but their moments are almost
orthogonal. The angle between the U and Fe moments is 74◦.
The results of density functional theory calculations [11] in
general reproduce well the experimental results. However the
U moment is underestimated and the calculated angle between
the U and Fe moments is 82◦. The study shows also that the
orbital polarization correction (OPC) as applied in [34] does
not improve the calculated results. For small values of this
correction, the U moment decreases and there is an increase
in the angle between the U and Fe lattices. If the correction
is increased to 1 mRyd, there is a sudden increase of the
U moment to 2 μB and the angle between the two lattices
decreases to 40◦. This is one of the problems that will be
analysed in the present calculations.

The previous band structure calculations for NpFe4Al8

confirm the tentative conclusions of the experimental
measurements which point to a neptunium moment aligned
along one of the crystal axes of the a–b plane and iron moments
forming a noncollinear structure in the same plane [22]. The
magnetic structure is similar to UFe4Al8: the Np sublattice
has a ferromagnetic structure along one of the basal plane

axes and the Fe lattice is canted by 13◦ relatively to the Np
moments with an antiferromagnetic projection perpendicular
to these moments. This angle should be compared with the
74◦ angle between the U and Fe moments in UFe4Al8, where
both elements contribute to the ferromagnetic component.
In the Np analogue the magnetic moment direction may be
reversed, depending on the magnitude of the orbital and spin
contributions. The computational study of NpFe4Al8 showed
a relation between the two magnetic lattices, Fe and the
actinide, that is different from UFe4Al8. Contrarily to that
which happens in UFe4Al8 if the Fe lattice is constrained
to a null moment, Np keeps a significant moment. When
the Np moments are kept null the Fe moments change
their alignment to a direction almost perpendicular to their
previously direction, close to the type G antiferromagnetic
configuration. The inclusion of an OPC term increases
significantly the Np orbital moment.

2. Calculation method

The calculations, based on density functional theory, with
the von Barth–Hedin parameterization for the local density
approximation, were performed using the augmented spherical
waves method modified to account for the spin spiral
structures as described in [33, 35]. The magnetic moment
and density of states were determined by self-consistent
calculations, constraining the compounds to several magnetic
configurations. The number of reciprocal lattice points in
the irreducible part of the Brillouin zone was 10 × 10 × 10.
Convergence with respect to the number of reciprocal points
was confirmed with 4207 k points. The variation of the
magnetic moment is less than 0.001 μB/atom. The energy
is more sensitive, varying by 0.1 mRyd. Therefore the total
energy of each magnetic configuration was determined using
a method which is more numerically stable, the magnetic
force theorem [36], with 1000 reciprocal lattice points in the
Brillouin zone. The eigenvalue sum was calculated at 0 K
and at 100 K, the latter using the Fermi–Dirac distribution
and taking care to calculate the exact chemical potential; these
results differ by less than 0.05 mRyd and do not change
the positions of the maxima and minima. Two series of
calculations with different initial charge densities resulted in
similar results, with deviations smaller than 0.06 mRyd.

One of the problems of the spin spiral calculations is the
apparent loss of translational symmetry due to the rotation
of the magnetic moments. However in the absence of spin–
orbit coupling, i.e. with a scalar-relativistic Hamiltonian, it
is possible to use spin-space groups and the corresponding
generalized Bloch theorem [37, 38]. This makes it unnecessary
to use a super-cell in the calculation of a spin spiral without
spin–orbit coupling.

The case of a spin spiral with strong spin–orbit coupling
is more complicated as the spin–orbit term does not commute
with the translation along a spin spiral: in other words the
coupling between the spin and the lattice depends on the
relative orientation between them; advancing along a spin
spiral from one atom to the next the contribution of the
spin–orbit coupling to the Hamiltonian varies as a function
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of the spin orientation, and is not constant from atom to
atom. One way of solving this problem would be to perform
super-cell calculations, as used to analyse spin spirals in
US [39], however here we used a frozen spin–orbit coupling
approximation, considering that all of the atoms along the spin
spiral have the same spin–orbit coupling. The actual value
of the spin–orbit coupling depends on the relative orientation
of the spin moment of the atom used in the calculations.
Tests, presented in the following section, confirm that this
approximation is valid for these compounds.

Using the fact that the electronic and magnetic timescales
are different, it is possible treat the magnon excitations within
an adiabatic approximation [40]. This approximation neglects
the magnetization precession due to the spin wave, assuming
that the magnon energy is small when compared with the
band widths and the exchange energies of the system. The
procedure we used consists in calculating the variations of
the total energy for magnetic configurations in which the
magnetic moments with different directions, simulating the
thermal fluctuations of the moment orientation and neglecting
any sort of Stoner fluctuations. Within the frozen magnon
approximation this corresponds to choosing static spin spiral
configurations described by a wavevector q and an angle θ , the
polar angle that describes the atomic magnetic moments, see
for example [33].

The energy of the system can be written as a function of
the spin spiral parameters:

Eq(θ) = E0(θ)− sen2θ

2
Jq (2)

where E0 does not depend on q and Jq is the Fourier transform
of the exchange parameters between atom pairs. Using Jq the
excitation energies of the spin waves can be estimated:

ωq = 4

M

[
J0 − Jq

] = 8

Msen2θ

[
Eq(θ)− E0(θ)

]
(3)

where M is the atomic moment. Performing the inverse Fourier
transform:

J0 j = 1

N

∑

q

Jqe−iq·R0 j (4)

the Curie temperature can be calculated within the mean field
approximation:

kBTC = 2

3

∑

j �=0

J0 j = M

6μB

1

N

∑

q

ωq . (5)

All the calculations presented in this paper follow the
implementation described in [41] with θ = 30◦. The magnon
energies were estimated only for the acoustic branch since they
correspond to the lower temperatures.

3. Results and discussion

3.1. UFe4Al8

In order to clarify some properties of the compound we
repeated the computational study of UFe4Al8. We started
the calculations by the study of the dependence of the U

Table 1. Spin and orbital magnetic moments of U, calculated for
UFe4Al8 with different Wigner–Seitz radii. The unit cell volume was
kept constant. In the second column is tabled the charge of the U
atom in electrons.

U radius Charge mspin morb

(au) (e) (μB/U) (μB/U)

3.45 −1.17 × 10−1 −1.19 1.71
3.50 1.3 × 10−2 −0.08 0.21
3.52 1.4 × 10−2 −0.12 0.29
3.59 2.7 × 10−1 −1.24 1.79

moment with its Wigner–Seitz radius. The magnetic moment,
within the atomic sphere approximation (ASA), should not be
sensitive to the Wigner–Seitz radius. We performed several
calculations with the U moments aligned perpendicular to
an antiferromagnetic Fe lattice, in which the relative Fe and
U Wigner–Seitz radii were modified, maintaining a constant
lattice volume. The results are summarized in table 1. The Fe
magnetic moment does not vary however the U spin moment
changes from 0.1 to 1.2 μB/U, as the Wigner–Seitz deviates
from 3.50 au. This radius corresponds to the lower charge
transfer for the U atom and is the value used in the calculations
that follow. Below we will relate the instability of the U
magnetic moment with the shape of the density of states.

The density of states calculated for the paramagnetic state
is shown in figure 2. The high Fe density of states at the Fermi
level leads to a large moment in the magnetic state. The U
density of states shows a maximum slightly above the Fermi
level but with a local minimum exactly at EF. Its critical
location explains the large range of values for the U moment
strongly dependent on the Wigner–Seitz radius, since a slight
deviation in energy results in a large variation of the density
of states at the Fermi level. The two maxima on the density
of states are separated by 0.05 Ryd, which gives an estimate of
the spin–orbit coupling splitting. The density of states was also
computed for a magnetic configuration with the U moments
ordering ferromagnetically and aligned perpendicular to the Fe
moments that were constrained to a type G antiferromagnetic
order (figure 3). The Fe density of states shows a spin splitting
of 0.1 Ryd, with maxima 0.05 Ryd above and below EF leading
to a magnetic moment of 1.3 μB/Fe. The U has a smaller
splitting, with the main maxima above EF.

We also determined the ground state configuration
using the magnetic force theorem [36]. The method
consisted in comparing the total energy of different magnetic
configurations. We started with the configurations described
above and varied the canting angle of the Fe lattice ending in
a collinear ferromagnetic structure. In figure 4 the total energy
is plotted as a function of the angle between the Fe and U
magnetic lattices. The ground state structure corresponds to
an angle of 85◦ which compares well with the 82◦ reported
previously [11]. The small difference is due to the fact that
the previously reported value was calculated using a self-
consistent variational method for the energy minimization
whereas the present canting value was obtained via the force
theorem.

A previous study of UFe4Al8 concluded that the orbital
polarization correction does not improve the calculated
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Figure 2. Density of states calculated for the paramagnetic state of
UFe4Al8 for rWS = 3.50 au. The total density of states is given for an
entire unit formula and the partial density of states of U, Fe and Al
are given for one atom. The Fermi level corresponds to E = 0.

results [11]. To understand this peculiar behaviour we repeated
the calculation. Hund’s second rule was modelled by adding
a term to the Hamiltonian of the form HOP = IOP E3 Lml

as applied in [34]. This corresponds to a splitting of the ml

states by an energy given by the OPC parameter in mRyd. This
correction was applied only to the U f states. In order to better
understand the effect of the OPC correction we varied the value
of the Racah parameter from 0.01 to 5 mRyd, including the
self-consistent value, 2.3 mRyd. The magnetic structure was
constrained to a ferromagnetic ordering of the U moments and
a type G antiferromagnetic configuration for the Fe lattice, with
the moments perpendicular to the U moments.

Two series of calculations were carried out starting from
two different U charge densities which converged to two
different local minima with different U moments. For some
of the values of the orbital polarization correction splitting,
it is possible to distinguish the metastable solution from the
lower energy configuration. The results obtained in the present
study are summarized in table 2. This instability of the U
moment can be explained by the same arguments used in
the case of the variation of the Wigner–Seitz radii. Within
each series the U moment increases, as expected, with the
increase of the orbital polarization correction splitting. For
an orbital polarization correction of 0.01 mRyd, the lower
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Figure 3. Density of states calculated for a ferromagnetic
configuration of U with the moment along a and an antiferromagnetic
type G configuration of the Fe lattice along b. The total density of
states is given for an entire unit formula and the partial density of
states are given for one atom. The Fermi level corresponds to E = 0.

Figure 4. Energy differences of configurations with different canting
angles for the Fe moments. The angular deviation of the Fe moment
relatively to the type G antiferromagnetic configuration, α is given
along the horizontal axis. The angle between the U and Fe moments
is given by θ = 90◦ − α.

moment configuration is 4 mRyd lower than the other state
and for an orbital polarization correction of 0.5 mRyd, the
difference is already 10 mRyd; however for a orbital splitting
of 1 mRyd, the two states present similar total energies, within
the accuracy of the calculations. Calculations started with the
first charge density and R = 2 mRyd converge to the high spin
values. The Racah parameter of 2.3 mRyd corresponds to the
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Table 2. U spin, orbital and total moments in UFe4Al8—1st and 2nd
series of results (depending on initial charge density). The
orientation of the magnetic moments was fixed as defined in the text.

Racah parameter mspin morb mtotal

(mRyd) (μB/U) (μB/U) (μB/U)

0.01 −0.1 0.3 0.2
0.1 −0.6 0.7 0.1
0.5 −0.6 0.9 0.3
1 −0.6 1.0 0.4

0.01 −1.2 1.8 0.6
0.1 −1.3 1.8 0.6
0.5 −1.4 2.2 0.8
1 −1.4 2.5 1.0
2 −1.6 3.1 1.5
2.3 −1.7 3.4 1.7
5 −1.8 4.4 2.6

Table 3. U spin, orbital and total magnetic moments and
Fe moments direction calculated self-consistently for UFe4Al8

with OPC.

Racah parameter Fe moments mspin morb mtotal

(mRyd) direction (μB/U) (μB/U) (μB/U)

1 82.5◦ −0.33 0.47 0.17
1 12◦ −1.89 2.87 0.98
2.3 (self-c.) 28◦ −1.99 3.49 1.50

self-consistently calculated value of the Racah parameter. For
all of the calculations, the Fe moment is found to be 1.3 μB,
with variations less than 0.02 μB/Fe.

Four more calculations were performed, in which the
direction of the magnetic moments was self-consistently
determined, for three reference values of the orbital
polarization correction. The results are summarized in table 3.
For an orbital polarization correction of 1 mRyd the calculation
converges for two different configurations from the two
different initial states, showing again the instability of the
U moment and the influence of its value in the direction of
the Fe moment. The higher the U moment the lower is the
angle between the Fe and U magnetic lattices. For an orbital
polarization correction splitting of 2.3 mRyd, the two initial
densities converged to the same result; there is a significant
increase of the U moment and a large decrease on the angle
between U and Fe moments, which corresponds to an increase
in the magnetization. This is consistent with the results
reported in [11].

3.2. Magnetic structure of YFe4Al8 and UFe4Al8

Calculations for a spin spiral configuration were performed for
UFe4Al8 also using the magnetic force theorem. The same
type of cycloids described in section 1.1 were considered,
with propagation vectors along [110], of the form q =
2π
a (τ, τ, 0). The magnetic moments were kept in the basal

plane and, initially, no additional phase difference was
considered between the U and Fe lattices. Therefore the
angle between the atomic moments, θ , is given by the scalar
product of the propagation vector and the position vector θ =
q · (rFe − rU). In order to understand how spin–orbit coupling

Figure 5. Relative energy for UFe4Al8 with a magnetic cycloid with
a propagation vector q = 2π

a (τ, τ, 0): upper (lower) line, not
including (including) spin–orbit coupling. The various points for the
τ = 0.8 (with spin–orbit coupling) correspond to different initial
orientations of the cycloid, as described in the text.

affects the magnetic configurations two series of calculations
were performed; the first series of spin spiral calculations
was performed without the inclusion of spin–orbit coupling,
the second series including this term. Since the spin–orbit
coupling term depends on the direction of the moment relative
to the crystal axis, in a spin spiral it breaks the translational
symmetry. Therefore, in the second set of calculations, a
frozen spin–orbit coupling term was included as described in
the previous section.

The results plotted in figure 5 show that the lowest
energy configuration changes from a spin spiral with q =
2π
a (0.8, 0.8, 0) without the inclusion of spin–orbit coupling to

q = 2π
a (1, 1, 0) when the spin–orbit coupling is considered.

The latter corresponds to a Fe lattice with a type G
antiferromagnetic ordering and a ferromagnetic U lattice,
close to the ground state configuration previously determined.
This result illustrates the importance of spin–orbit coupling
in determining the ground state magnetic configuration of
UFe4Al8.

In order to evaluate the accuracy of the frozen spin–
orbit coupling approach, calculations with the propagation
vector q = 2π

a (0.8, 0.8, 0) and spin–orbit coupling terms
corresponding to different directions of the U moment relative
to the crystal axis were also performed. The results of this test
are represented as the various points for τ = 0.8 in figure 5:
the energy differences of these configurations are more then
one order of magnitude smaller them the energy variation with
τ , which leads to the conclusion that the results presented in
figure 5 are a clear indication of the variation of the energy
of a configuration with the propagation vector. Furthermore,
in order to identify the role of the relative orientation between
the U and the Fe moments, another series of calculations was
performed with both lattices constrained to the cycloid with
q = 2π

a (0.8, 0.8, 0), but with the introduction of an additional
phase difference between them, ψ . Thus the angle between
the atomic moments, θ , is given by θ = q · (rFe − rU) + ψ .
Results show that the change in energy due to the change of
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Figure 6. Projection of the Fe (black arrows), U and Np (white arrows with black borders) magnetic moments in the a–b plane, for, from left
to right, UFe4Al8, NpFe4Al8 and YFe4Al8.

the relative orientation is again small when compared with
the changes due the variation of τ in the propagation vector
q = 2π

a (τ, τ, 0), of the order of 0.1 mRyd. This shows that the
phase between the U and Fe cycloids is not determinant for the
lowest energy magnetic configuration. In the absence of spin–
orbit coupling YFe4Al8 and UFe4Al8 form a spin spiral ground
state with a propagation vector of q = 2π

a (0.8, 0.8, 0) (for
U) or q = 2π

a (0.85, 0.85, 0) (for Y) has a lower energy than
the type G antiferromagnetic Fe ordering. Including spin–orbit
coupling in the UFe4Al8 calculation impedes the formation of
this spin spiral state. On the other hand, the magnitude of the
Fe magnetic moments hardly changes for different magnetic
configurations. The values are also in very good agreement
with the experimental values.

The calculated ground state structures for all of
these compounds have the Fe moment in a noncollinear
configuration in the basal plane, corresponding to different
variations of the type G antiferromagnetic ordering. Figure 6
shows the relative alignment of the magnetic lattices for
these two compounds: to allow a further comparison between
actinide/rare earth compounds, the structure for NpFe4Al8 is
also shown. The spin spiral of YFe4Al8 can be seen as
a deviation from an antiferromagnetic ordering by one of
the two Fe sublattices. This deviation is of 24◦ according
to neutron diffraction data [3], or 27◦ according to the
calculations (figure 6). Thus the similarity between the
magnetic structures of the Fe lattice of UFe4Al8 and YFe4Al8

is evident, both compounds have a Fe sublattice with a
structure that corresponds to a deviation from a type G
antiferromagnetic structure, deviation that is constrained by
the different symmetry properties of each compound, as
imposed by the differences in the spin–orbit coupling in the
compounds. The magnitude of the actinide moment influences
the orientation of the Fe moments: the higher the spin moment
of the actinide the lower the angle between the two sublattices
(figure 6 and table 4). The spin moment of Np is considerably
higher than the U spin moment, which justifies the calculated
angles for the Fe moments in NpFe4Al8 and UFe4Al8 and a
test calculation with a zero Np moment results in a magnetic
Fe structure that is very similar to that in the U compound.

Table 4. Calculated magnetic moments and experimental
magnetization for the ground state structures of the three compounds
YFe4Al8, UFe4Al8 and NpFe4Al8.

mspin morb mtotal Mtheory Mexp

Atom (μB/atom) (μB/atom) (μB/atom) (μB/fu) (μB/fu)

YFe4Al8 0 0 [3]
Y �0.1 �0.1 �0.1
Fe 1.25 0.08 1.33

UFe4Al8 0.6 1.6 [6]
U −0.08 0.21 0.17
Fe 1.33 0.07 1.40

NpFe4Al8 5.5 2.3 [22]
Np −3.33 3.20 −0.13
Fe 1.37 0.07 1.44

3.3. Calculation of the exchange constants for YFe4Al8 and
UFe4Al8

Calculations based on the frozen magnon approximation [40]
have been used to determine the exchange constants and
the ordering temperatures for ferromagnetic YFe2 and
UFe2 [42]. Although the absolute TC values were not
accurately reproduced, the calculated values reproduced the
large difference in the values of TC. Here we present a similar
study performed for YFe4Al8 and UFe4Al8.

YFe4Al8 and UFe4Al8 are essentially antiferromagnetic
with ordering temperatures of 185 and 153 K, respectively,
with deviations from the antiferromagnetic configurations as
described earlier. In order to study the influence of the
magnetic ordering on the application of the frozen magnon
approximation, we started with a detailed study of YFe4Al8,
and calculate the transition temperature using different ferro
and antiferromagnetic configurations. We considered spin
excitations where the moment is deviated 30◦ from the
axis of rotation, which corresponds to perturbations of the
following magnetic configurations: ferromagnetic along c,
ferromagnetic and antiferromagnetic along a. The total energy
dependence with the propagation vector q was calculated for
three independent directions, with the use of the force theorem.
These energy curves were fitted using a sum over the terms
Ji(1 − R j · q) for each site j of the coordination sphere i .
The number of considered spheres is relatively high even for
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Figure 7. Calculated energy versus q calculated for three magnetic
configurations with the moments along the a axis (symbols). The line
corresponds to the fitting with the exchange constants in table 5. The
magnetic configurations, from top to bottom, are: (1) YFe4Al8,
ferromagnetic; (2) YFe4Al8, antiferromagnetic; (3) UFe4Al8,
antiferromagnetic.

small distances since the crystal structure is tetragonal with
two formula units in each unit cell. The exchange constants
are found by minimizing the deviation between the fitted curve
and the calculated energy values.

In the first series of calculations for YFe4Al8 8
coordinations spheres and a ferromagnetic configuration with
the moments deviated from the c axis were considered.
The next series were performed for the ferromagnetic and
antiferromagnetic configurations with the moments along a.
The transition temperature was calculated within the mean field
approximation. In figure 7 the energy dependence with q , the
propagation vector, is presented.

The exchange constants for the nearest neighbour, table 5,
are larger than the value calculated for Fe [43, 44], however
they decrease quickly with the distance between neighbours
which results in a lower transition temperature than for pure
Fe. The YFe4Al8 calculated temperatures are, for the three
cases considered, higher than the experimental values, this is

Table 5. Exchange constants and transition temperatures, calculated
for YFe4Al8 and UFe4Al8. Ferro and antiferromagnetic
configurations along the a and c axes.

YFe4Al8J
(mRyd) FM ‖ c FM ‖ a AFM ‖ a

UFe4Al8

AFM ‖ a

J1 1.681 1.684 −1.748 −1.915
J2 −0.180 −0.237 −0.231 −0.243
J3 0.169 −0.141 0.062 0.184
J4 0.088 0.218 0.011 −0.048
J5 −0.004 −0.039 0.012 0.170
J6 −0.038
J7 0.002
J8 −0.003
TC (K) 353 392 437 450

expected in the mean field approximation [43]. The calculated
transition temperature is higher for the configuration with the
moments along the basal plane, which is in agreement with
the fact that this is the easy magnetization axis. A similar
increase occurs when one changes from the ferromagnetic
to the antiferromagnetic configuration, which again is to be
expected as the latter is closer to the ground state configuration.

For YFe4Al8, the Y moment is essentially zero and only
the Fe–Fe interactions were considered. For UFe4Al8, the U–
Fe interactions were not considered since the U moment is
induced by the Fe moment [11] and therefore it is the Fe lattice
that determines the transition temperature. Both the exchange
constants and the transition temperature have slightly larger
values than the ones calculated for YFe4Al8. However the
difference in the temperature is only of 3%, with values of
437 K for YFe4Al8 and 450 K for UFe4Al8. The experimental
ordering temperatures are also relatively close, 185 and 153 K,
respectively.

These results show that this method is not adequate for
determining the exact temperatures, but that it reproduces the
relation between the transition temperatures for the Y and U
compounds where it is the Fe sublattice that determines the
magnetic behaviour.

4. Conclusions

The magnetic behaviour of the compounds studied in the
present work is determined by the Fe sublattice. The
Fe moments have similar magnitudes in the compounds,
1.3 μB/Fe, independently of the ordering to which the
sublattices were constrained in the calculations. As shown
in figure 6, the calculated ground state structures for all
the compounds have the Fe moment in a noncollinear
configuration in the basal plane, corresponding to different
variations of the type G antiferromagnetic ordering. For the
actinide compounds, the application of the frozen spin–orbit
coupling approximation is shown to be reliable and allow
an analysis of ‘spin spirals’ in an actinide compound. The
strong spin–orbit coupling makes the formation of spin spirals
energetically unfavourable and the ground state configuration
is a ferromagnetic actinide sublattice with the spin moment
along one of the basal plane axes and a canted Fe sublattice
that deviates from this direction.

8
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The similarity between the magnetic structures of
YFe4Al8 and UFe4Al8 is further emphasized by calculations
for UFe4Al8 without spin–orbit coupling, where the ground
state is found to be a spin spiral with a propagation vector
of q = 2π

a (0.8, 0.8, 0), very similar to that of YFe4Al8. The
calculations for the compounds YFe4Al8 and UFe4Al8 and also
for NpFe4Al8 are in good agreement with the experimental
results and show common features, which can be summarized
by the fact that all three Fe sublattices represent deviations
form the G type antiferromagnetic, the determinant role of the
Fe lattice in the basic magnetic behaviour, the role of spin–orbit
coupling and the relation between magnitude of the moment
of the M sublattice and the direction of the Fe moments.
The identification of two different solutions for self-consistent
calculations for UFe4Al8 explains the unusual results that were
identified in a previous theoretical study.

We also present results for the exchange constants and
critical temperatures of YFe4Al8 and UFe4Al8 calculated
within the frozen magnon approximation. Calculations find
that the Fe–Fe exchange constants and deduced transition
temperatures are similar for these two compounds, reproducing
well the relation between the experimental values, and indicate
that the role of the U sublattice is comparable to that of the
non-magnetic Y sublattice.
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